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Abstract

This paper studies the noise robustness of Laplace of hyperbolic (LoH) and Laplace of Gaussian (LoG) wavelets. A

typical example of using the LoH and LoG to study Duffing oscillation under normal and noisy conditions is given.

Relative merits of each method are discussed.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Time–frequency signal processing has been the central part in the field of signal processing for many
decades. A typical time–frequency distribution is the general distribution defined by Cohen [1,2] in which a
kernel plays an important part in shaping the characteristics of the distribution. Kernel design has been an
interesting research topic for many years with popular kernels such as Wigner-Ville and Choi–Williams (CW)
finding many applications in other fields of science, especially the latter [1–7]. It was found that the CW kernel
is the Laplace of Gaussian (LoG), which can be used to generate the popular Mexican-hat wavelet by taking
the negative second derivative of the Gaussian pulse. Using the same principle, a hyperbolic wavelet or
Laplace of hyperbolic (LoH) was generated from a hyperbolic kernel which was also shown to be more
effective in term of noise robustness and cross-term suppression than the popular CW kernel, but less effective
in auto-term support in the time–frequency plane [8–11]. To compare kernels in terms of noise robustness and
auto-term support, it is necessary to study their auto-term functions, which can be considered as proportional
to the noise robustness of the kernel. The method of using the auto-term function has been pioneered by Amin
[12], and Stankovic and Ivanovic [13] with foundational works on estimating kernel noise variance.

Time–frequency kernels are two-variable functions of y and t, which must meet certain criteria to be valid in
Cohen’s time–frequency distribution [1,2]. One main problem in time–frequency power spectra of multi-
component signals is the coupling of cross terms in the time–frequency plane or also known as artefact which
are undesirable. By using an appropriate kernel, its time–frequency distribution can become more efficient
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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with less cross terms and more auto-terms which represent the true time–frequency power spectrum of the
input signals. However, even though cross terms are undesirable, it is not possible to completely eliminate
them since they form part of the time–frequency power spectrum. Thus, the more auto-terms a power
spectrum has, the less artefact and hence the better the representation. Auto-terms in a time–frequency power
spectrum are located along straight lines passing through the origin at different angles. Thus, it is possible to
detect them by sweeping through the entire time–frequency plane at a fine-enough resolution, i.e. replacing y
with (at) where a is an auto-term slope, yielding auto-term functions as functions of t, the lagging variable, of
the kernel. By estimating the auto-term function, it is possible to study noise robustness of kernels, which is
very useful in determining the kernel’s performance [11].

Recent publications on the hyperbolic kernel have focused on its noise robustness and auto-term function
in which detailed comparisons were made with the CW kernel and Mexican-hat wavelet [8–11]. A recent
work by Shark and Yu [14] studied the LoG power spectrum by using a generalized LoG. The new matched
wavelet, which can be defined by matching the generalized LoG with a polynomial, was shown to be
more effective than the LoG by improving peak detection by at least 10% using graphical computer
simulations. However, a systematic approach on studying noise robustness of symmetrical wavelets has not
been established.

In this paper, motivated by the auto-term method applied to time–frequency kernels, to compare the
performance of wavelets, the method of finding wavelet ‘‘auto-term functions’’ is employed which is of
the same principle as has been applied to time–frequency kernels. It should be noted that the LoG and LoH
are generated by taking the negative second derivative of the corresponding kernels. It should also be stressed
that wavelet signal processing is essentially a time–frequency signal processing in which symmetrical wavelets
have been rarely used because they are not orthogonal and their scale functions do not exist. However, they
are more effective than orthogonal wavelets in detecting matched features and edges in images [15–17]. By
providing a benchmark comparison in terms of noise robustness, it is possible to systematically assess
performance of symmetrical wavelets under different values of their control parameters such as s for the LoG
and b for the LoH.

This work continues the work on comparing the hyperbolic and CW kernels reported in [3], hyperbolic and
CW wavelets [10,18] and on deriving the auto-term and estimating the noise robustness of these two kernels
[8]. The lower and upper bounds signal-to-noise ratio of the first- and nth-order hyperbolic kernels have also
been studied [14,19]. CW and hyperbolic distributions have also been employed to model the distribution of
random scatterers in multi-path mobile environment, from that, the angle-of-arrival probability density
function was derived [20,21]. The key objective of this paper is to use the auto-term method, which has been
widely used to derive auto-term functions of time–frequency kernels, to approximately estimate the auto-term
functions of symmetrical wavelets. The aims of this paper are thus three-fold: (1) to systematically estimate the
auto-term functions of the LoG and LoH, and (2) to assess the performance of the LoG and LoH by
estimating their noise robustness. In addition, the LoG and LoH are also employed to detect chaos in Duffing
oscillation under normal and noisy conditions.

The paper is organized as follows. Section 2 derives the LoG auto-term function with detailed
approximations when b is small and when it is large. Section 3 derives the LoH auto-term function with
approximations when s is small (b large) and when it is large (b small). Sections 4.1 and 4.2 qualitatively
compare the performance of the LoG and LoH, in which performance comparisons with their corresponding
CW and hyperbolic kernels are given. Section 4.3 quantitatively compares the performance of the LoG and
LoH under the typical condition of ab ¼ 1. Sections 5.1 and 5.2 give background on the continuous wavelet
power spectra and Duffing oscillation. Sections 5.3–5.6 perform experiments on using the LoG and LoH to
study Duffing oscillation under normal and noisy conditions. Section 6 concludes the main findings of the
paper and outlines possible further work.

In this paper, the noise robustness of the LoG and LoH is estimated as functions of b and a. The parameter
o ¼ 1 rad/s is employed as was in Ref. [22] to study the Duffing oscillator. Typically, a is in the range of
0.1pap10 [1,12,13], thus, it can be considered that as b approaches infinity (b is large), bba and thus a and o
can be safely ignored to simplify theoretical noise robustness expressions. For small b, appropriate
approximations can also be obtained. The noise robustness ratio of the LoH to the LoG is also obtained under
a typical condition of ab ¼ 1 in Section 4.3.
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2. LoG noise robustness estimation

The CW kernel is given by

FCWðy; tÞ ¼ exp �
y2t2

s

� �
, (1)

where s is the kernel’s control parameter.
The LoG is mathematically given by taking the negative second-order derivative of the CW kernel

LoGðtÞ
��
y¼�at ¼ 12ba2t2 expð�ba2t4Þ � 16b2a4t6 expð�ba2t4Þ, (2)

with s ¼ 1/b,
The LoG energy is given byZ þ1

�1

12ba2t2 expð�ba2t4Þ � 16b2a4t6 expð�ba2t4Þdt � 16ðb0:75Þa1:5: (3)

The LoG auto-term function is therefore given as

auto-term of LoG ¼

Z þ1
�1

exp �
a2t4

s

� �
e�jot dt. (4)

or with s ¼ 1/b Eq. (4) can be rewritten as

auto-term of LoG ¼

Z þ1
�1

expð�ba2t4Þe�jot dt. (5)

Using Maple and combining the condition of s ¼ 1/b, and with g ¼ ba2, Eq. (5) can be explicitly given as

LoG auto-term ¼ �
96ðgÞ

ffiffiffiffiffiffi
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o4

256g
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ffiffiffi
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p
ðgÞ1:5

�
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ffiffiffi
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BBBBBBBB@
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CCCCCCCCA
. (6)

By letting z ¼ ðo4=256gÞ ¼ ðo4=256ba2Þ, the individual hypergeometric terms in Eq. (6) can be
mathematically expressed as

0F2f½�; ½0:5; 0:25�; zg ¼
Xþ1
k¼0

1

Gð0:5þ kÞ

Gð0:5Þ
Gð0:25þ kÞ

Gð0:25Þ

zk

k!
, (7)

0F2f½�; ½0:75; 1:5�; zg ¼
Xþ1
k¼0

1

Gð0:75þ kÞ

Gð0:75Þ
Gð1:5þ kÞ

Gð1:5Þ

zk

k!
, (8)
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1F 3f½1:75�; ½0:5; 0:75; 0:25�; zg ¼
Xþ1
k¼0
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, (9)

1F 3f½2:25�; ½0:75; 1:5; 1:25�; zg ¼
Xþ1
k¼0
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k!
, (10)

From Eqs. (7)–(10), Eq. (6) can be rewritten as

LoG auto-term ¼ � ðg0:25Þ
Xþ1
k¼0

1

Gð0:5þ kÞ
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Gð0:25þ kÞ
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Fig. 1. LoH auto-term as a function of b and a using Eq. (29).
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Fig. 2. LoG auto-term as a function of b and a using Eq. (12).
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2.1. For large b

Since 0.1pap10 and o ¼ 1 rad/s [11], when b approaches infinity, z approaches zero, g approaches
infinity, the only dominant term in the infinite summation in Eq. (11) is that corresponding to k ¼ 0,
yielding

auto-term of LoG ¼ � g0:25 þ
2:72o2

g0:25
þ 2:45g0:25 �

0:9o2

g0:25

¼ 1:45g0:25 þ
1:82o2

g0:25
�!
g!1

1:45g0:25 ¼ 1:45ðba2Þ
0:25
¼ 1:45ðb0:25a0:5Þ. (12)

By comparing Eq. (12) with Eq. (29), it is clear that the LoG yields a better auto-term value than the LoH as
evidenced in Figs. 1 and 2 when b approaches infinity.
2.2. For small b

For small b, z becomes large, therefore zk=k! will be dominant for small-enough values of k. The LoG auto-
term function can then be written as

LoG auto-term ¼
2:72o2

g0:25
Xþ1
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1
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g0:25
Xþ1
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1:133
ðk � 0:25Þ!

1:225416

ð0:5þ kÞ!

0:5
ffiffiffi
p
p
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0:9064

zk
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¼
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g0:25
ðX � Y Þ. (13)

For a large value of z, say z ¼ 106 ¼ o4
�
ð256gÞ, which means o2

¼ 16,000(ab0.5), Eq. (13) becomes

LoG auto-term ¼ 16; 000a0:5b0:25

Pþ1
k¼0

3

½ðk � 0:25Þ!�½ðk þ 0:5Þ!�

ð10Þ6k

k!

�
Pþ1
k¼0

0:782½ðk þ 1:25Þ!�

½ðk � 0:25Þ!�½ðk þ 0:5Þ!�½ðk þ 0:25Þ!�

ð10Þ6k

k!

2
66664

3
77775

¼ 6:8476� 10132a0:5b0:25. (14)

From Eq. (14), it is evident that for small b different from 0 which corresponds to large s, the LoG possesses
a large auto-term value which significantly improves its noise robustness. It should be noted that if b ¼ 0,
i.e. s ¼+N, then the LoG auto-term is exactly zero which makes it vulnerable to noise.

2.3. Validation

To validate the approximations performed in Sections 2.1 and 2.2, quantitative measures should be taken by
estimating the relative errors between the theoretical auto-term expression (Eq. (11)) and the approximated
expression (Eq. (12)). Fig. 3 shows the Gaussian auto-term comparison errors for large and small g. As can be
seen from Fig. 3(a), the error becomes small when g increases which validate the approximation performed in
Section 2.1. For small g, the error is non-zero, however, its magnitude is finite which shows that the
Fig. 3. Gaussian auto-term comparison errors between the theoretical and approximated expressions for large and small g.
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approximation under the large g condition can be marginally applied under the small g condition. Similar,
from Fig. 3(b), the error rises to about 0.01 when gE0.5 and saturates at a final value of about 0.007 when g is
large. Thus, Fig. 3(b) can be used to validate the approximation performed in Section 2.2. It should also be
noted that the error magnitude for large and small g is relatively small which indicates that the approximation
is not only correct but also robust which further suggests that the auto-term method of assessing symmetrical
wavelets is appropriate.
3. Estimating the LoH noise robustness

The LoH noise robustness is defined as the ratio of its auto-term function and energy. To estimate the LoH
auto-term function, its mathematical expression should be generated by taking the kernel’s negative second
derivative. The hyperbolic kernel is given as

H ¼ sech ðbytÞ, (15)

where b is the kernel’s control parameter, y and t variables in the frequency- and time domain respectively.
The auto-term function of a kernel is defined as

auto-term function ¼

Z þ1
�1

Fðy; tÞ
��
y¼�at e

�jot dt, (16)

where F(y, t) is the kernel function and a the auto-term slope. By replacing the kernel function F(y, t) by the
mathematical expression of the LoH as given in Eq. (17), the LoH auto-term function can be estimated under
specific conditions of b.

The negative second-order derivative of the hyperbolic kernel or LoH as a function of t is given as

LoH ¼ �
a2b2t2f½coshðbat2Þ�2 � 2g

½coshðbat2Þ�3
. (17)

The LoH energy is given by

LoH energy ¼

Z þ1
�1

a2b2t2½cosh2ðbat2Þ � 2�

cosh3ðbat2Þ
dt

� �2

. (18)

The LoH auto-term function is given by

LoH auto-term ¼

Z þ1
�1

b2a2t2fsechðbat2Þ � 2½sechðbat2Þ�3g cosðotÞdt

¼ b2a2

Z þ1
�1

t2sechðbat2Þ cosðotÞdt� 2b2a2

Z þ1
�1

t2½sechðbat2Þ�3 cosðotÞdt

¼ A� 2B. (19)

By using the series expansion of sech(x) [11]

sechðxÞ ¼ 2
X1
k¼0

ð�1Þke�ð2kþ1Þx; for x40, (20)

Term A in Eq. (19) can be rewritten as

A ¼ 2
Xþ1
k¼0

ð�1Þk
Z þ1
�1

t2 exp½�ð2k þ 1Þabt2� cosðotÞdt, (21)
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which can be simplified as given in Eq. (22)

A ¼
ffiffiffi
p
p Xþ1

k¼0

ð�1Þk
ð4kabþ 2ab� o2Þ exp �

o2

4ð2k þ 1Þab

	 

2½ð2k þ 1Þab�5=2

8>><
>>:

9>>=
>>;. (22)

Term B can be rewritten as

B ¼

Z þ1
�1

t2 cosðotÞ 2
Xþ1
k¼0

ð�1Þk exp½�ð2k þ 1Þabt2�

 !3

dt. (23)

It should be noted that the auto-term slope a is of a much smaller magnitude order compared to b and o.
Some useful approximations of the LoH auto-term function can be obtained as follows.
3.1. For large b

Only the first two terms of A corresponding to k ¼ 0 and 1 are employed because of the dominant term of
b�2.5 in the denominator, from Eq. (22), A can be rewritten as

A �
ffiffiffi
p
p

ð2ab� o2Þ exp �
o2

4ab

	 

2ðabÞ5=2

�

ð6ab� o2Þ exp �
o2

12ab

	 

2ð3abÞ5=2

8>><
>>:

9>>=
>>;

¼
ffiffiffi
p
p

ð2a� o2Þ exp �
o2

4a

	 

2ðaÞ5=2

�

ð6a� o2Þ exp �
o2

12a

	 

2ð3aÞ5=2

8>><
>>:

9>>=
>>;, (24)

where a ¼ ab.
For Term B, from Eq. (23), only the first term of the infinite series significantly contributes to its value, thus

B can be approximately given as

B �

Z þ1
�1

8t2 cosðotÞ expð�3abt2Þdt, (25)

which can be simplified to

B �

2
ffiffiffiffiffiffi
3p
p
ð6ab� o2Þ exp �

o2

12ab

� �
27ðabÞ3=2

; (26)

or

B �

2
ffiffiffiffiffiffi
3p
p
ð6a� o2Þ exp �

o2

12a

� �
27ðaÞ3=2

with a ¼ ab. (27)

The auto-term of the LoH can then be written as

LoH auto-term ¼ A� 2B �

ffiffiffi
p
p

exp
�o2

12a

� �
6a exp

�o2

6a

� �
� 3 exp

�o2

6a

� �
� 6a

ffiffiffi
3
p
þ

ffiffiffi
3
p

o2

	 

6a5=2

. (28)
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For small-enough frequency, Eq. (28) can be further simplified as

A� 2B �

ffiffiffi
p
p
½6að1�

ffiffiffi
3
p
Þ � 3þ

ffiffiffi
3
p

o2�

6a5=2
�!
a!1 1:3

a3=2
¼

1:3

ðabÞ3=2
. (29)

3.2. For small b

If b ¼ 0, i.e. s ¼+N, from Eq. (19), the noise robustness of the LoH is zero which means that it is
vulnerable to noise and interferences. To obtain the approximate expression of the LoH auto-term function, it
should be noted that only the first terms of Term A and Term B are used because they are the largest in the
series. The corresponding Term A and Term B for small b can be given by

A ¼

�
ffiffiffi
p
p
ðo2Þ exp �

o2

4ab

	 

2ðabÞ5=2

¼

�
ffiffiffi
p
p
ðo2Þ exp �

o2

4a

� �
2a5=2

, (30)

and

B �

�2
ffiffiffiffiffiffi
3p
p
ðo2Þ exp

�o2

12a

� �
27ðaÞ3=2

. (31)

Therefore, the LoH auto-term function for small b can be given as

A� 2B �

�
ffiffiffi
p
p
ðo2Þ exp �

o2

4a

� �
2a5=2

þ

4
ffiffiffiffiffiffi
3p
p
ðo2Þ exp

�o2

12a

� �
27a3=2

. (32)

Because a is small, hence a1.5 is much larger than a2.5, and for large enough o, Term B will be much smaller
than Term A. Thus, Eq. (32) can be rewritten as

A� 2B � �

0:886ðo2Þ exp �
o2

4a

� �
a5=2

, (33)
which is plotted in Fig. 4.
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Fig. 4. LoH auto-term as a function of a and o for small b.
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Fig. 5. Hyperbolic auto-term comparison error for large a.
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From Eq. (33), it is evident that under DC condition, the LoH auto-term is zero, leading to zero noise
robustness. From Fig. 4, for 0ooo5 rad/s, the auto-term function attains its peak. For o45 rad/s, the
function rapidly decays to zero.
3.3. Validation

Similar to Section 2.3, the relative errors between the theoretical and approximate auto-term expressions for
small and large b are estimated in this section to validate the findings reported in Sections 3.1 and 3.2. From
Fig. 5, for small a, the error appears to be infinite. However, for large a, the error becomes virtually zero and
which validates the approximation performed in Section 3.1. For small a, as shown in Section 3.2, the
theoretical hyperbolic auto-term expression is directly employed to compare the effectiveness of the hyperbolic
and Gaussian wavelets, therefore, further validation is not required in this case. Because the approximations in
Sections 2 and 3 are validated, the findings shown in Section 4 can also be validated.
4. Noise robustness comparison of the LoG and LoH

Using results obtained in Sections 2 and 3, this section aims to compare the noise robustness of the LoH and
LoG under different conditions of b, a and o.
4.1. For large b

The noise robustness ratio RN of the LoG and LoH is used to compare the performance of the LoG and
LoH. The ratio RN is given as

RN ¼
LoH noise robustness

LoG noise robustness
¼

LoH auto-term function

LoG auto-term function

� �
LoG energy

LoH energy

� �
. (34)
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The energy ratio RE of the LoG to LoH is the ratio of Eq. (3) to Eq. (18) and is given by

RE ¼
16ðba2Þ

0:75

Rþ1
�1

a2b2t2f½coshðbat2Þ�2 � 2g

½coshðbat2Þ�3
dt

� �2
, (35)

which is plotted in Fig. 6.
From Fig. 6, it is clear that the energy ratio of the LoG to LoH is larger than 1 which indicates that

the LoH is more noise robustness than the LoG. The auto-term ratio of the LoH to LoG is approximately
given by

auto-term of LoH

auto-term of LoG
�

1:3

1:45a2b1:75
. (36)

The noise robustness ratio of the LoH to the LoG is therefore given by

RN ¼
16ðba2Þ

0:75

Rþ1
�1

a2b2t2f½coshðbat2Þ�2 � 2g

½coshðbat2Þ�3
dt

� �2

1:3

1:45a2b1:75

¼
14:34

a4:5b5
Rþ1
�1

t2f½coshðbat2Þ�2 � 2g

½coshðbat2Þ�3
dt

� �2
. (37)

It should be clear that when b becomes very large, Eq. (37) approaches zero. However, to further
reveal salient features of the noise robustness ratio, Eq. (37) is plotted in Fig. 7 as a function of a

and b from which it is evident that the noise robustness ratio of the LoH to the LoG behaves like an
impulse centred at around a ¼ b ¼ 0.5. From Fig. 7, it is evident that the LoH is more effective than
the LoG for signals with auto-terms located close to the x and y axes in the time–frequency plane,
i.e. a is small.
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Fig. 7. Normalized noise robustness ratio of the LoH to LoG as a function of b and a for large b.
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4.2. For small b

By using Eq. (35) for the energy ratio RE, and Eqs. (33) and (14), respectively, for the auto-term functions of
the LoH and LoG, the noise ratio is given in Eq. (38) as

RN ¼
16ðba2Þ

0:75

Rþ1
�1

a2b2t2f½coshðbat2Þ�2 � 2g

½coshðbat2Þ�3
dt

� �2

0:886ðo2Þ exp �
o2

4ab

� �

ðabÞ5=2

6:8476� 10132a0:5b0:25

0
BBBB@

1
CCCCA

¼

32:375 exp �
4000

b0:5

� �

ð10129Þa4:5b5:5
Rþ1
�1

t2f½coshðbat2Þ�2 � 2g

½coshðbat2Þ�3
dt

� �2
! 0. (38)

Thus, it can be suggested that the LoH is more effective than the LoG for large b. This means that for
signals with auto-terms located mainly in the first quadrant of the time–frequency plane, the LoH can be more
effectively used because of its superior noise robustness and auto-term support. The inverse proportionality of
the signal-to-noise ratio of the LoH to a and b consequently causes the noise robustness ratio of the LoH to
the LoG to be inversely proportional to a and b. It is thus clear that the energy ratio of the LoG to the LoH
does not have significant effects on their noise robustness which was observed and presented in Ref. [11] in the
form of kernel’s weighting functions. Based on this, it is possible to numerically estimate the signal-to-noise
ratio of the LoH and LoG as functions of a and b.

To compare the auto-term functions of the LoH and LoG, Eqs. (33) and (14) can be used with some chosen
values of o. It should be realised that for o ¼ 1 rad/s, the LoH auto-term function attains its ‘‘minimum
value’’ for 0oop1 rad/s and is given by

auto-term of LoH ¼

0:886 exp �
1

4a

� �
a5=2

¼

0:886 exp �
1

4ab

� �
ðabÞ5=2

. (39)



ARTICLE IN PRESS
K.N. Le / Journal of Sound and Vibration 315 (2008) 343–364 355
It should also be noted that z ¼ o4=256g ¼ 106, hence, o2
¼ 16,000(ab0.5). By using o ¼ 1 rad/s, one can

work out the relationship between a and b which is given by

a ¼
1

16000b0:5
¼ 0:0625� 10�3ðb�0:5Þ. (40)

The LoH to LoG auto-term ratio is therefore given by

Auto-term of LoH

Auto-term of LoG
¼

0:886 exp �
1

4ab

� �
ðabÞ5=2

1

6:8476� 10132a0:5b0:25

¼

0:1265� 10�132 exp �
1

4ab

� �
a3b2:75

¼

518:144� 10�123 exp �
61; 538

b0:5

� �
b1:25

! 0, (41)

which shows the effectiveness of the LoG over the LoH when b becomes very small, z ¼ 106 and o ¼ 1 rad/s.
4.3. For ab ¼ 1

The noise robustness ratio of the LoH to the LoG is qualitatively estimated in Sections 4.1 and 4.2 via
Eqs. (37)–(41) for large and small b. However, further information on this ratio can be obtained by estimating
it as a function of a and b under specific conditions. By varying a and b under the typical condition of ab ¼ 1
[11–13], the noise robustness ratio of the LoH to LoG can be determined and plotted in Fig. 8 from which for
a approaches 10, it seems that the noise robustness ratio is approximately saturated at �100 dB. As b further
increases, the ratio gradually decreases which indicates that b is the dominant factor which can be used to
adjust the performance of the LoH and LoG, not a, even though, for ao10, it can also be used in conjunction
with b to obtain satisfactory performance. From Fig. 8, it can be said that the LoH is more noise robust than
the LoG when bp10. The performance of the LoH is largely independent of the auto-term slope a as it is
evident that when a increases, the noise robustness ratio saturates at around 150 dB for small b. For a410 and
large b, it seems that the LoH to LoG noise robustness ratio can reach as low as �150 dB. For b410
and small a, the noise robustness ratio seems to saturate at a final value of about 0 dB. It should be noted that
Fig. 8. Noise robustness ratio of the LoH to LoG as a function of b and a, with ab ¼ 1.
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Table 1

Performance comparison of time–frequency kernels and their corresponding symmetrical wavelets with ab ¼ 1

Kernel/wavelet Noise robustness (dB)

Small b Large b

Hyperbolic kernel 20.3 17.56

Choi–Williams kernel 2585.8 (with z ¼ 106) 11.9

Hyperbolic wavelet (LoH) �1.05 2.28

Choi–Williams wavelet (LoG) 2656.7 (with z ¼ 106) 3.227
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Fig. 8 is obtained under the condition of ab ¼ 1, prompting that new results and insight can be obtained under
other conditions.

Table 1 summarizes the links between time–frequency kernels and symmetrical wavelets by comparing their
noise robustness when ab ¼ 1.

5. The use of the LoH and LoG to study Duffing oscillation

In this section, the LoG and LoH power spectra are used to study Duffing oscillation for Period 1, Period 2,
Period 4 and chaotic waveforms. Performances of the LoG and LoH under normal and noisy conditions can
then be assessed.

5.1. The continuous wavelet power spectrum

The continuous wavelet transform WT(a, b) of an input signal x(t) is defined as [16]

WTða; bÞ ¼

Z þ1
�1

xðtÞc
t� b

a

� �
dt, (42)

where a and b are the time and scale indices, respectively, with c(a, b) the mother wavelet. In this paper the
LoG and LoH are used as mother wavelets so that their noise robustness can be examined.

The wavelet power spectrum WPS(a, b) is defined as [23–25]

WPSða; bÞ ¼ ½WTða; bÞ�½WT�ða; bÞ� ¼ jWTða; bÞj2, (43)

which is a function of a and b. The WPS can be used to examine characteristics of signals in both time and
scale, from which transitions to chaos can also be detected.

5.2. Duffing oscillation

Duffing oscillation is mathematically described by the following equation [22]:

€xþ d _x� 0:5ðx� x3Þ ¼ F cosðotÞ, (44)

where d ¼ 0.168, o ¼ 1 rad/s, and F the driving function. For Period 1, F1 ¼ 0.05; Period 2, F2 ¼ 0.178;
Period 4, F4 ¼ 0.197 and for chaotic state, Fch ¼ 0.21. The initial conditions used for the system were
½ x _x � ¼ [0 1].

5.3. Duffing Period 1

Duffing Period 1 waveform is considered to be purely periodic which is represented by repetitive contours
with high energy as can be seen in Fig. 9.

Under random noise of 0.5 dB, the LoG WPS deteriorates in which the main harmonics are partly masked
as can be seen in Fig. 10 which clearly shows the existence of background noise. The more background noise,
the less robust the wavelet.
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Fig. 10. Duffing Period 1 waveform in random noise of 0.5 dB and its LoGWPS. (a) Duffing Period 1 waveform with added noise, (b) the

WPSmexh of noisy Duffing Period 1 waveform.
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Fig. 9. Duffing Period 1 waveform and its LoG WPS. (a) Duffing period 1 waveform, (b) the WPSmexh of Duffing Period 1 waveform.
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The LoH WPS is shown in Fig. 11 from which it is clear that the LoH WPS is cleaner than the LoG WPS
with less background noise. In addition, even though the waveform is masked by random noise, dominant
harmonic peaks can still be recognized which shows that the LoH is more noise robust than the LoG as
theoretically shown in Sections 2–4.
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Fig. 11. Duffing Period 1 waveform embedded in random noise of 0.5 dB and its LoH WPS. (a) The WPShyp of Duffing Period 1

waveform, (b) the WPShyp of noisy Duffing Period 1 waveform.
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Fig. 12. Duffing Period 2 waveform and its LoG WPS. (a) Duffing Period 2 waveform, (b) the WPSmexh of Duffing Period 2 waveform.
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5.4. Duffing Period 2

Duffing Period 2 can be considered as similar to Duffing Period 1 except that minor chaotic transition
is injected into the waveform which is mainly due to the change of the driving force F as shown in Eq. (44).
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Fig. 13. Duffing Period 2 waveform embedded in random noise of 0.5 dB and its LoG WPS. (a) Duffing Period 2 waveform with added

noise, (b) the WPSmexh of noisy Duffing Period 2 waveform.
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Fig. 14. Duffing Period 2 waveform embedded in random noise of 0.5 dB and its LoH WPS. (a) The WPShyp of Duffing Period 2

waveform, (b) the WPShyp of noisy Duffing Period 2 waveform.
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Thus it is expected that there are less dominant harmonic peaks. This also means that the energy in the
waveform is more broadly distributed than Duffing Period 1 as evidenced in Fig. 12. Fig. 13 shows the LoG
WPS of Duffing Period 2 waveform embedded in random noise of 0.5 dB from which it is clear that most



ARTICLE IN PRESS
K.N. Le / Journal of Sound and Vibration 315 (2008) 343–364360
dominant harmonic peaks can clearly be shown. There exists some background noise at high scales (low
frequencies). Fig. 14 shows the LoHWPS of Duffing Period 2 embedded in random noise from which it can be
suggested that the LoH WPS is slightly cleaner than the LoG WPS. From the findings in Section 5.3, it can be
suggested that the LoG performance is improved when the input waveform is not purely periodic. As the
nature of the waveform approaches chaos, better noise robustness can be obtained. On the other hand, the
LoH noise robustness seems unchanged as the nature of the input waveform deviates from periodicity as can
be seen in Fig. 14.

5.5. Duffing Period 4

Duffing Period 4 can be regarded as the transition from periodicity to chaos of Duffing oscillation. As such,
it is expected that less harmonic peaks are present in the waveform as evidenced in Fig. 15. Fig. 16 shows the
LoG WPS of Duffing Period 4 embedded in random noise of 0.5 dB from which it is evidenced that the LoG
WPS is noise robust. There is much less low-frequency background noise which is present in Duffing Period 1,
2 and 4 waveforms. It should be noted that this is consistent with what predicted in Sections 5.4 and 5.5. In
addition, the transition from periodicity to chaos of Duffing Period 4 can still be recognized by having
contours with broadly distributed energy located at most time indices. Fig. 17 shows the LoH WPS of Duffing
Period 4 embedded in random noise of 0.5 dB from which there slightly exists more low-frequency background
noise than in the LoG WPS. This shows that the LoG is more noise robust than the LoH for transition-to-
chaos waveforms such as Duffing Period 4.

5.6. Duffing chaos

Fig. 18 shows Duffing chaotic waveform and its LoG WPS under normal conditions. Duffing chaotic
waveform still possesses dominant harmonic peaks at random intervals. However, it should be noted that this
waveform is distinctively different from Duffing Periods 1, 2 and 4 by having broadly distributed contours at
low frequencies. These contours are the key differences, which make the waveform to be chaotic. Fig. 19
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Fig. 15. Duffing Period 4 waveform and its LoG WPS. (a) Duffing Period 4 waveform, (b) the WPSmexh of Duffing Period 4 waveform.
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Fig. 17. Duffing Period 4 waveform embedded in random noise of 0.5 dB and its LoH WPS.(a) The WPShyp of Duffing Period 4

waveform, (b) the WPShyp of noisy Duffing Period 4 waveform.
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Fig. 16. Duffing Period 4 waveform embedded in random noise of 0.5 dB and its LoG WPS. (a) Duffing Period 4 waveform with added

noise, (b) the WPSmexh of noisy Duffing Period 4 waveform.
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graphically shows the LoG WPS in which there exists considerable low-frequency background noise, which
suggests that the LoG is not noise robust when the input waveform is purely chaotic. Fig. 20 shows the LoH
WPS from which it is clear that the LoH is more noise robust than the LoG for a chaotic input waveform.
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Fig. 19. Duffing chaotic waveform embedded in random noise of 0.5 dB and its LoG WPS. (a) Duffing chaotic waveform with added

noise, (b) the WPSmexh of noisy Duffing chaotic waveform.
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Fig. 18. Duffing chaotic waveform and its LoG WPS. (a) Duffing chaotic waveform, (b) the WPSmexh of Duffing chaotic waveform.
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Another key difference when recognizing periodic and chaotic waveforms is that for the former waveform
there exists background noise at all time indices whereas for the latter waveform, the background noise is only
present at a few strong harmonic peaks detected by the WPS. From Fig. 19, even though it is possible to detect
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Fig. 20. Duffing chaotic waveform embedded in random noise of 0.5 dB and its LoH WPS. (a) The WPShyp of Duffing chaotic waveform,

(b) the WPShyp of noisy Duffing chaotic waveform.
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chaos in the input waveform, it is clear that the LoG WPS tends to spread the input random noise to other
time indices which makes the recognition process more difficult. From Fig. 20, it is clear that the LoH WPS
clearly shows distinctive and discontinuous background noise at low frequencies which uniquely represent the
chaotic nature of the input waveform.

6. Conclusion and further work

The noise robustness ratio of CW wavelet (LoG) and hyperbolic wavelet (LoH) has been studied in which
the LoH was found to perform better than the LoG for large b. For a typical case of ab ¼ 1, the LoH was
found to perform better than the LoG when bp10. Experiments in using the LoG and LoH to study Duffing
oscillation have been performed yielding consistent results predicted by theory. It has been shown that the
LoG is more noise robust than the LoH for transition-to-chaos input waveforms such as Duffing Period 2 and
Period 4. The LoH has been shown to be more effective than the LoG for purely periodic and chaotic
waveforms such as Duffing Period 1 and Duffing chaotic. It has also been shown that the LoH WPS can be
more effectively used to recognize chaos under noisy conditions in which distinctive and discontinuous
background noise can be detected.

Possible further work on the LoG and LoH are as follows:
1.
 Derivation of a general formula for performance comparisons of the LoH and LoG.

2.
 Performance dependence on b and the order of derivative used to generate symmetrical wavelets.

3.
 Performance measures of higher-order symmetrical LoG and LoH for chaotic detection under normal and

noisy conditions.
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